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Taylor hypothesis and large-scale coherent structures 
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The applicability of the Taylor hypothesis to large-scale coherent structures in turbu- 
lent shear flows has been evaluated by comparing the actual spatial distributions of 
the structure properties with those deduced through the use of the hypothesis. This 
study has been carried out in the near field of a 7.62 cm circular air jet at a jet Reynolds 
number of 3.2 x lo4, where the coherent structures and their interactions have been 
organized through controlled excitation. Actual distributions of the structure proper- 
ties have been obtained through phase-average hot-wire data, the measurements 
having been repeated at  different spatial points over the extents of the structure cross- 
sections at  a fixed phase. The corresponding ‘spatial ’ distributions of these properties 
obtained (by using the Taylor hypothesis) from the temporal data at  appropriate 
phases and locations, show that bhe hypothesis works quite well for an isolated co- 
herent structure if a constant convection velocity, equal to the structure centre 
velocity, is used in the hypothesis everywhere across the shear flow. The popular use 
of the local time-average or even the instantaneous streamwise velocity produces 
unacceptably large distortions. When structure interactions like pairing are involved, 
no convection velocity can be found with which the hypothesis works. Distributions 
of the terms in the Navier-Stokes equation contributing to the phase-average vorticity, 
but neglected by the hypothesis, have been quantitatively determined. These show 
that the terms associated with the background turbulence field, but not those asso- 
ciated with the coherent motion field, can be neglected. In  particular, the pressure 
term due to the coherent motion field is large and cannot be neglected. 

1. Introduction 
In turbulent flows, a spatial description of the flow structure is of primary interest. 

However, economy, convenience and inherent constraints dictate use of a limited few 
sensors which typically provide time-traces of flow variables at stationary locations. 
The researcher thus has had to endeavour to deduce spatial descriptions from tem- 
poral information recorded by stationary sensors. Taylor ( 1938) hypothesized that the 
time-history of the flow signal from a stationary probe can be regarded as that due to 
advection of a ‘frozen’ spatial pattern of turbulence past the probe with the mean 
speed U ,  i.e. u(x,  t )  = u(x  - Ut,  0 ) ,  and Favre, Gaviglio & Dumas (1952) were the first 
to demonstrate experimentally its validity for grid turbulence. This ‘ Taylor hypo- 
thesis’ has been extensively used in measurements of the wavenumber spectrum, and 
dissipation and other turbulence measures requiring spatial gradients of field proper- 
ties like velocity, temperature, concentration, etc. 
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Following Champagne (1978), let us consider that the velocity field u(x, t )  in a 
stationary frame is u*(x*,t) in a frame convected downstream with a velocity U .  
Then, 

xt = xi - UtSIi, U t ( X * ,  t )  = u&x, t) - ua,,; ( 1 )  

If U is sufficiently large and the time rate of change in the convected frame is suffi- 
ciently small, it follows that, 

i a  a 
ax, uaty 

-- - = -  (3) 

which is the popular form of the Taylor hypothesis. 
Lin (1953) estimated the different terms in the Navier-Stokes equation and derived 

(3) for large R, and low turbulence intensities. By invoking local isotropy a t  large R,, 
Heskestad (1965) derived an expression relating spatial derivatives of velocity to 
corresponding temporal derivatives, which allowed correction for large turbulence 
intensities. Fisher & Davies (1964) showed that large excursions from the mean 
velocity produce large departures of the convection velocity from the local mean 
velocity, and explained physical mechanisms which make direct correspondence 
between true spatial scales and measured temporal scales difficult. The observations 
of Fisher & Davies prompted Lumley (1965) to analyse different mechanisms that 
might invalidate the Taylor hypothesis. He showed that a t  the small scales, all other 
effects excepting that of a fluctuating convection velocity can be neglected and 
accordingly proposed a correction model for spectra. Champagne (1978) obtained an 
analytical solution for the true spectrum on the basis of the Lumley correction, but 
found that the measured spectrum near the Kolmogorov frequency can exceed the 
true spectrum by 238%. Taylor hypothesis has also been found to produce large 
distortions in the spectra of lateral velocity and scalar fluctuations (Wyngaard & 
Clifford 1977), and in the probability density functions of velocity and temperature 
derivatives (Antonia, Chambers & Phan-Thien 1980). 

When large-scale motions are considered, the objection to the Taylor hypothesis 
should be conceptually apparent from the associated large shear and fluctuation 
intensities. For the case of a pure shear flow U(y), equation (3) suggests that only the 
first two terms in the x-component of the Navier-Stokes equation, 

+ 1'- (4) 
au a& au au -+ u-+v-+u.- 
at ax ay 3 axj pax axjaxj> 

are important. The third term is obviously not negligible unless U aupx 9 vdU/dy ,  
i.e. kU > dU/dy (Lin 1953); where E is the wavenumber. Thus, for the shear layer a t  
x/D 2: 1.5 in the circular jet discussed in this paper, the hypothesis may be expected 
to apply for frequency components f 9 200 Hz, whereas the frequency of the large- 
scale structure studied is 35 Hz. On the other hand, the large-scale structure occurring 
most frequently in the same jet without excitation (i.e. the preferred mode) is expected 
t o  be at 24 Hz. Thus, use of the Taylor hypothesis for studying typical large-scale 
structures is expected to be grossly in error. 

Yet, the Taylor hypothesis has been widely used in situations involving energetic 

1 ap a2u = --- 
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large-eddy motion and in particular, for eduction of large-scale coherent structures 
(for example, Browand & Wiedman 1976; Yule 1978; Wygnanski & Champagne 1973; 
Wygnanski, Sokolov & Friedman 1976; Zilberman, Wygnanski & Kaplan 1977; 
Cantwell, Coles & Dimotakis 1978; Sokolov et al. 1980). In many other papers, use 
of the hypothesis is implicit because structure characteristics are inferred from time 
traces obtained with stationary sensors. In  these kinds of studies, the error introcluced 
by theTaylorhypothesishas been typically assumednon-negligible butneverevaluated. 
This study quantitatively evaluates this error by comparing the ‘spatial ’ distributions 
of phase-average flow properties obtained via the hypothesis with the measured actuul 
spatial distributions. 

This experiment was done in a flow involving vortex pairing occurring at  a 
specified location at  regular intervals under an appropriate excitation condition. 
[Additional details are available in Zaman & Hussain (1980) and Hussain & Zaman 
(1980), hereinafter referred to as I and 11, respectively.] A pair of structures during 
the pairing, and the single structures preceding and at two successive locations follow- 
ing the pairing, in the same flow, provided a variety of structures for which the Taylor 
hypothesis has been examined. These data thus provide adequate bases for determining 
the applicability of the hypothesis to turbulent shear flows in general. 

2. Experimental procedure 
The experiments were carried out in a 7.62 cm diameter air jet discharging into a 

large laboratory through the centre of a 31-cm end plate, a t  ReD = 3.2 x lo4. The jet 
was excited at stD( -= f,D/U,) = 0-85, via a loudspeaker attached to the settling 
chamber, at  an exit amplitude (uL/Ue) of 3 %; f, is the excitation frequency, U, is the 
exit velocity, u: is the r.m.s. longitudinal velocity fluctuation at 2 = 0, and D is the 
diameter. For both excited and unexcited situations, the exit boundary layer was 
laminar and the exit flow was checked to be axisymmetric. Additional details of the 
apparatus were given in I and Zaman (1978). Measurements were carried out with 
4 ,u diameter tungsten (single and crossed) hot-wires operated by standard DISA 
constant temperature anemometers, linearizers, etc. 

The jet near-field coherent structures at a single phase are shown schematically in 
figure 1. The flow field is divided into four measurement ‘regions’, I-IV. The phase 
chosen was such that the two pairing toroidal vortices were roughly in their ‘radial 
configuration’ in region 11. At this selected phase, region I contained a single vortex 
shortly after its roll-up and regions I11 and I V  captured the merged structure at  two 
successive stages of evolution. In each region, measurements were carried out in two 
steps. In the first step, actual spatial distributions of the phase-average flow properties 
were obtained. A reference (single-wire) probe placed in the flow gave the reference 
(C) signal periodic at  4 fp. At a particular phase of this reference signal, selected via a 
triggering device, data were sampled from the measurement x-wire probe by the on- 
line laboratory minicomputer (HP2100S). The x-probe was moved to different grid 
locations by an automated backlash-free traversing mechanism operated by the 
computer. At each grid point, the averages were computed with a sufficiently large 
ensemble of data in order to ensure convergence. 

In the second step of data acquisition, the probe was traversed in y only, at  an x- 
station in the middle of each measurement region. At each y, the instantaneous C(t )  
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FIGURE 1 .  Schematic diagram of the flow and probe arrangement. 

and v"(t) signals were recorded on digital magnetic tapes. Beginning with each trigger, 
the signals were recorded for a period of time such that the structure 'footprint' was 
centred in this period. This thus provided data in the (t, y) plane. Each realization 
consisted of 64 data points spanning about 1-5 times the period of the subharmonic. 
The ensemble sizes at  each y for regions I, 11, I11 and IV  were chosen to be 1600,2880, 
3840 and 5760, respectively, in order to satisfy acceptable convergence. The number 
of y steps used for both stages of data acquisition, i.e. in the (x, y) and ( t ,  y) planes, 
was the same for each region. 

The effect of the Taylor hypothesis on the distributions of the phase-average 
azimuthal vorticity Q( = a(v)/ax - a(u)/ay), where (u) and (v) are phase averages of 
.ii and 5 (i.e. (u) = (G)), constitutes the principal thrust of our discussion in this paper. 
Note that deduction of spatial distributions Q(x,y) from the time traces of ii and v" 
requires use of the Taylor hypothesis twice: first, in conversion of a(v)/at to a(v)/ax 
in order to obtain Q at each ( t ,  y) and then to transform the 51 distribution from the 
(t, y) plane to the physical plane (x, y). Since the conversion of data from the (t, y) 
plane to the (x, y) plane is intuitively more perceptible, we concentrate primarily on 
the subtle aspect of the Taylor hypothesis needed to obtain a(v)/ax from a(v)/at a t  
each (t, y). Thus we shall mostly focus on Q(t ,  y), i.e. the phase-average of instantaneous 
vorticity a, i.e. 

where U, is the convection velocity used in the Taylor hypothesis. 
Most of the Q(t, y) data will be presented in the ( t ,  y) plane over a typical range of 

0 < r < 36 ms. Since this range exceeds the period (28.5 ms) of the structure passage 
(i.e. the subharmonic), clearly the contour patterns would be expected to repeat a t  
the ends of the 7 range. Detailed inspection should reveal small differences between 
the repeated parts because at  increasing times from trigger, the increasing loss of phase 
reference (i.e. jitter) progressively smears out the contours. 
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A number of choices for UT (equation (5)) are possible, notably, 

Assumption ( 6 a )  uses the local time-average velocity U. Although Lin’s (1953) 
analysis suggests that this choice may not be at all appropriate for most turbulent 
shear flows, it has been almost universally used in conversion of time-spectra to wave- 
number spectra and in measurements of dissipation and other measures. Assumption 
( 6 6 )  would appear quite reasonable since a t  any instant it is the instantaneous velocity 
.ii with which the fluid moves downstream over the probe. Note that Foss (1978) uses 
this for the measurement of the ‘instantaneous vorticity’. Assumption ( 6 c )  is a 
compromise between ( 6 a )  and ( 6 6 ) ,  in that the phase-average vorticity a t  a selected 
phase is related to the phase-average velocity (u ) .  Assumption ( 6 4  uses the structure 
overall convection velocity U,, the velocity of the structure ‘centre’. This, of course, 
would be the correct choice only if the structure were a blob of passive fluid convected 
downstream with U,. Note that even on a phase-average basis, the assumptions 
(66 ,  c )  are expected to produce noticeably different results for the same flow, the 
differences arising from the fact that the second term on the right-hand side in (5) is 
nonlinear in velocity. It is thus clear that even though (6a )  is extensively used in 
turbulent shear flows, alternative assumptions for U, are possible, and there is no 
a priori basis for deciding on the most appropriate choice. 

In  addition to vorticity, contours of other measures of the coherent structures were 
also obtained in the (z, y )  and the ( t ,  y )  planes. These included (uf)*, (v:)i, (upv,) and 
(u,vr), as well as different terms in the equations for the phase-average vorticity and 
strain rate. The definition of these quantities follow from the triple decomposition, 
ij = ij + g p  + gr,  where g, is the phase-average contribution due to the coherent struc- 
ture and g, is due to the background turbulence field. In  order to conserve space, only 
a limited few of these measurements will be discussed in this paper. Further details 
of these results can be obtained from t’he authors. 

3. Results and discussion 
3.1. The actual vorticity contours 

The spatial distributions of the phase-average vorticity 0, computed from measured 
distributions of ( u )  (x, y )  and ( v )  (z, y), are shown in figures 2 (a)-(d) for regions I-IV, 
respectively. These do not involve use of the Taylor hypothesis, and thus represent 
the actual vorticity distributions within the experimental uncertainty. Note that 
these data, for the same flow condition and approximate phase as those reported in 
11, were retaken together with the ( t ,  y )  plane data to be discussed later, in order to 
ensure that the flow conditions were exactly the same for the two data sets. 

Figure 2 (a)  shows a type 2 vortex (one which is decelerating and expanding in its 
toroid diameter prior to pairing, type 1 being the ‘leapfrogging’ one); figure 2 ( 6 )  
shows the two vortices in the ‘radial configuration’ during pairing; and figures 2 (c, d )  
show the paired structure a t  two successive downstream locations - all at a fixed 
phase. The low-speed side distortion (i.e. dip) in the vorticity contours is more promi- 
nent in the upstream regions. This distortion is due to the combined effects of: (a)  
measurement errors during flow-reversal, i.e. the hot-wires being insensitive to flow 
direction, and ( b )  jitter in the triggering signal relative to the vortex arrival times, the 



384 K .  B. M .  &. Zaman and A .  K .  M .  F .  Hussain 

0.2 x lD 1.2 0.9 x / D  2.3 

._---- 0 .9 -  I I I I I  I I I I I 

Y ID 

I 
0.2 I ' ( ' 1  I I I I ' 
1.1 

0 

1.1 

).ID 

0 
2.1 .x/D 3.7 3.5 xlD 5.1 

FIGURE 2. Actual spatial distributions of a/$, for the four regions. (a) Region I; contour levels 
are: 20, 15, 10, 7 ,  5, 3, 2, 1, 0.5. ( b )  Region 11; contour levels are: 12, 10, 7, 5, 3, 2, 1, 0.5. (c) 
Region 111; contour levels are: 6, 5, 4, 3, 2, 1,  0.5. (d) Region IV;  contour levels are: 3, 2.5, 2, 
1-5, 1,  0.5. Measurements at R ~ D  = 3.2 x lo* in a 7.62 cm diameter jet excited at S ~ D  = 0.85 
with u:/lJe = 3 %. Vertical dotted lines represent stations where ( t ,  9 )  data ar0 taken. 

former effect being the more dominant one (further discussed in the next section). 
The axial locations where the ( t ,  y )  plane data were taken in each region are shown as 
dotted lines in figure 2. Note that for region 111, three sets of the temporal data were 
taken in order to test the sensitivity of the choice of x-station (discussed later). Also 
note that the Q / f ,  = 0.5 contour is shown as a dotted line in this paper because of 
larger uncertainty at  this low vorticity level. 

3.2. Vorticity contours using Taylor hypothesis 

Distributions of Q(t ,  y) were calculated from the measured G(t ,  y) and C( t ,  y )  by equation 
( 5 )  using the four choices of U, (equation ( 6 ) ) .  The Q(t ,  y )  contours for region I are 
shown in figure 3 ;  equations 6 (a)-(d) are used for the data in figures 3 (a)-(d),  respec- 
tively. The data are shown for - 36 ms < 7 < 0; the period corresponding to + f, 
(35 Hz) is 28.5 ms. Since region I is upstream of the pairing location, the passage 
frequency of the vortices is still f,, and the chosen time span (in figure 3) captured the 
vortex pair which later on would coalesce. The vortex on the left in each of figures 
3(a)-(d)  is the type 2 vortex (shown in figure 2 a ) ;  the vortex on the right is the type 
1 vortex which catches up with the leading vortex and passes through its interior 
before pairing. It is evident that although both the vortices are still in the process of 
roll-up, they have already started to attain different characteristics; this is evident 
from the slightly different cross-sections of the two. 

A structure convection velocity of 04Ue has been used in the conversion of aZ/at 
to 2B/2x in figure 3 ( d ) ,  this being the convection velocity of vortex 2 at this location; 
for details see I. It is evident that while the other three choices of U, produce large 
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FIGURE 3. Q ( t ,  y)/f, for region I. Conversion schemes used are: (a) UT = U(y), ( 6 )  UT = G ( t ,  y), 
( c )  UT = (u)(t ,  y) and (6) UT = U,( = 0.4U,). Unmarked contour levels in sequence are: 15, 10, 
7,  5 ,  3, 2 and 1. 

distortions in the SZ contours in figures 3 (a)-(c), use of the structure convection velocity 
as a constant value for U, produces a structure shape quite close to the actual shape 
shown in figure 2 (a) .  In  fact, if the abscissa is converted to x ( = &7), the longitudinal 
extent of vortex 2 ( L  N 0.5D) agrees quite well with that of the vortex in figure 2 (a ) ;  
note that the agreement of the overall transverse extent is also excellent. The schemes 
in figures 3 (a)-(c), i.e. use of the local time-average, instantaneous and phase-average 
velocities produce distributions somewhat similar to one another, but all are distinctly 
different from the actual. Note that the low-speed side distortion in these cases is 
especially aggravated. 

In  the actual vorticity contours, the occurrence of the ‘dip’ on the low-speed side 
was explained in 11. The effect of the sign error in hot-wire measurement of u at  
instants of flow-reversal is to introduce an error in the a(u)/ay term, although v and 
thus a(v)/ax are measured correctly. This error in a(u)/ay results in a shift of the 0 
contours towards the jet centre-line, thus creating the ‘dip’. In  the three conversion 
schemes in figures 3 (a)-(c), an error is also introduced in the a(v)/ax term a t  the loca- 
tions that involve flow-reversal. This is in addition to the error in the a(u)/ay term 
and occurs because a(v)/at (measured without the sign error) is divided by U, (which 
has sign error at  instants of flow-reversal). This produces a cumulative aggravation of 
the ‘ dip ’, which is further accentuated by the fact that U, values at  these locations are 
small (for equations 6a-c), thus exaggerating the error due to the term ( l / U T )  a(v)/at. 
In  comparison with the actual contours, it  is clear that the ‘dip’ is least in figure 3 (d). 
This is to be expected because no error is introduced by 6 ( d )  in the a(v)/ax term 
since a(v)/at is divided by a constant positive velocity (U,) everywhere. No attempt 
has been made to correct for the flow reversal effect, because it is not apparent that 
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a practical scheme can be developed to correct for this measurement error inherent to 
hot-wires. 

Vorticity distributions Q ( t ,  y) for region 11, using equations 6 (a)-(d), are shown in 
figures 4 (a)-(d), respectively. The corresponding distributions for regions 111 and IV 
are shown in figures 5 (a)-(d), and 6 (u)-(d), respectively. Region I1 contains the two 
vortices during most intense pairing activity. The two here have widely different 
convection velocities, 1*25Ue for vortex 1 (inner) and 0.35Ue for vortex 2 (outer). 
Figure 4(d )  shows the structures educed by using an average of the two velocities, 
namely U, = O-SU,; the structure shapes educed by using the individual convection 
velocities will be discussed later. Note that the time axis in figures 4 (a)-@) have been 
reduced to - 30 < 7 < 0. It is evident that the shapes and sizes of the structures in 
figures 4 (a)-(d) are distinctly different from the actual shape and size shown in figure 
2 ( b ) .  This is not unexpected in view of the rapid change and relative motion of the two 
vortices in this region. 

The region I11 captures a single vortical structure after the completion of pairing. 
The schemes (a)-(d) of equation (6) produce quite similar cross-sections, except in 
figure 5 ( d )  where the transverse extent is lesser, agreeing better with the actual dis- 
tribution in figure 2 ( c ) .  However, large differences remain between each of these 
distributions and the actual. Especially, note the ‘protrusion ’ in the front high-speed 
end of the structure and the ‘kink’ in the contours; these are not present in figure 
2(c).  The protrusion is due to the remnant of vortex 1 and it is evident that, when 
viewed in time with a probe located at  x / D  = 2-85, the merger of the two vortices 
was not quite completed; clearly, the contour details will depend on the choice of the 
x-station also (discussed later). 

All four of equations 6 (a)-(d) educe quite similar vorticity distributions in region 
IV, as shown in figures 6(a)-(d) ,  each agreeing well with the actual distributions 
shown in figure 2 (d). This region contains a structure after the completion of pairing 
and thus is relatively ‘passive’, and any of the schemes is fairly successful in educing 
the structure cross-section. The more pronounced sensitivity of the contours to the 
Taylor hypothesis in region I11 is to be expected, because when viewed in time from 
a point within this region, the individual identities of the two vortices have not been 
lost yet. As we have seen in region 11, the Taylor hypothesis then would not be ex- 
pected to work well. 

The above results suggest a pattern. For a single structure, Taylor hypothesis works 
quite well when used with the constant structure convection velocity. In  the case 
when the structure is passive, the contours in the ( t ,  y) plane are even insensitive to 
the specific choice of U,. When the structure is undergoing rapid changes, especially 
during interactions like tearing or pairing, the hypothesis introduces large distortions. 
In  this case, an average structure passage velocity used as the convection velocity 
makes the use of the hypothesis least objectionable. In  order of increasing passivity, 
we rank the regions 11, 111, I, IV, respectively. Thus, the hypothesis works best in 
region IV  and worst in region 11. 

All thevorticity contours in figures 3-6 are shown in the (t, y) plane. Since the purpose 
of the Taylor hypothesis is to obtain spatial distribution, it is necessary to examine 
the distortion introduced in the t -+ x transformation. The Q(x,  y) contours for regions 
I-IV, obtained from the (t, y) plane data, are shown in figures 7 (a)-(d), respectively. 
The U, = (u) ( t , y )  scheme has been used for figures 7 (a)-(c), while U, = U(y) has 
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FIGURE 4. Q(t ,  y)/f, for region 11. Conversion schemes used are: (a)  UT = U(y), (b )  UT = Z(t, y), 
(c) 77, = (u) ( t ,  y) and (d) UT = V,( = 0.8U,). Unmarked contour levels in sequence are: 10, 7,  
5 ,  3 and 2.- 

1.1 

Y / D  

0 

FIGURE 5. Q(t ,  y)/f, for region I11 from data taken at  x / D  = 2-85. Conversion schemes used 
are: (a) UT = U(y), ( 6 )  UT = G(t,  y), (c) UT = (u)( t ,  y) and (d) UT = U,( = 0.54U,). Unmarked 
contour levels in sequence are : 5, 3, 2 and 1. 
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FIGURE 7.  n(z, y)/f, from the ( t ,  y) data. (a )  Region I ;  UT = (u) ( t ,  y); contour levels are: 20, 
7, 3 and 1. (b)  Region 11; UT = (u)( t ,  y ) ;  contour levels are: 10, 5 ,  3 and 1. (c) Region 111; 
UT = (u)  ( t ,  y) ; contour levels are: 6, 2, 1 and 0.5. ( d )  Region IV; UT = U(y) ; contour levels 
are: 3, 2, 1 and 0.5. 
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been used for figure 7 ( d )  - for the t -+ x as well as &/at -+ av/ax transformations. 
Note that the origin of the x co-ordinate in each of figures 7(a)-(d) was assigned to 
an arbitrary point in time within the structure passage interval, and thus the abscissa 
in these figures are denoted by x’. Different choices of the time origin will produce 
different contour shapes from the same data whenever U, is not a constant across the 
shear flow. The gross distortion of the contours in each of the figures is evident; this 
is not unexpected in view of the large gradient in either of U(y) and ( u )  (y) across the 
shear layer. Note that the relatively lesser, though unacceptably large, distortion in 
the contours in figure 7 ( d )  should not be taken to indicate that U(y) is better than 
{u} (y) as a choice for U,. This is merely a consequence of the fact that the gradient 
in U(y) in region IV  is less than that in the upstream regions. If 77, = U(y) were used 
for the t -+ x conversion in figure 7 ( a ) ,  for example, and the same time origin were 
assigned to correspond to x‘ = 0, a distribution very similar to that in figure 7 ( a )  
would result. 

It should be emphasized that conversion oft -+ x with a constant convection velocity 
would produce the same contours as shown in figures 3-6. When such conversion is 
done with the structure average convection velocity, the axial extents of the vortical 
structures agree quite well with those of the actual vorticity distributions in figure 2,  
except in region I1 where there is no unique structure convection velocity. Note 
further that use of G(t, y) for the t -+ x conversion is equivalent to using (u) ( t ,  y), and 
thus are not shown. 

The effect of using a single convection velocity in region I1 is further examined in 
figure 8; the Q contours drawn with the convection velocities of vortex 1 (1.25Ue) 
and vortex 2 (0.35Ue) are shown in ( a )  and (b), respectively. For comparison, see the 
corresponding actual spatial distribution in figure 2 ( b ) ,  and the distribution using an 
average convection velocity, i.e. U, = 0*8U,, in figure 4(d). It is clear that use of the 
convection velocity of vortex 1 further distorts vortex 2 (figure Sa),  and vice versa 
(figure 8b). Thus in region 11, the Taylor hypothesis can not produce satisfactory 
results with any choice of the reference frame velocity. It is clear that similar will be 
the case in regions and instants of tearing and ‘slippage’ which appear to be as fre- 
quent in turbulent shear flows as pairing is (Hussain & Clark 1981). 

The educed structure from the ( t ,  y) plane data can have pronounced dependence 
on the x-location where the data are taken, because the structure can undergo large 
evolutionary changes with x. The (t,y)-plane data discussed so far were taken at  x- 
stations where the structures at  the selected phase were approximately centred. The 
effect of the choice of the x-station with respect to the structure is demonstrated in 
figure 9, where Q contours are shown for region 111. Figures 9 (a,  b) correspond to data 
taken a t  x/D = 2.5 and x/D = 3.2, respectively. Figure 5 (d )  shows the same contours 
when the data were taken at  x/D = 2-85. The locations of these three stations relative 
to the structure at  the selected phase are indicated in figure 2 (c ) .  

Figure 9 (a)  shows contours inferred from data at an earlier x-station, and the still 
ongoing pairing activity is evident. The sequence of structure shapes in figures 9 (a),  
5 (a’) and 9 (b) agree with visualization observations of the pairing event, in which the 
inner vortex 1 is actually seen to overtake the slower moving outer one, while the 
smoke streaks from the former unwind and wrap around the latter. In  figure 9(a),  
the protrusion of the vorticity contours and the associated structure in the front is 
due to vortex 1 while the structure on the left is vortex 2. Figure 9(b) shows that even 
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FIGURE 9. n(t, y)/f, for region I11 from ( t ,  y) data taken at: (a )  x / D  = 2.5, (b )  x / D  = 3.2. 
Unmarked contour levels are in the sequence: 7, 5, 3, 2 and 1. 

a t  x / D  = 3.2, the ( t ,  y )  plane data capture remnants of the pairing activity as is clear 
from the protrusion of the contours in the front, due to vortex 1. But as expected, 
this protrusion progressively vanishes with increasing downstream shift of the measure- 
ment station; for example, compare the Q / f ,  = 2 contours in figures 9(a) ,  5 ( d )  and 
9(b ) .  Note that the ‘protrusion’ in figure 9 ( b )  is captured by the probe whenthe 
structure centre is located farther upstream than that shown in figure 2 (c). Clearly, 
if the ( t ,  y )  data were obtained at  a station farther downstream, the protrusion would 
not appear. It is also worth mentioning that from the vorticity peaks in figures 5 ( d )  
and 9 ( b ) ,  the time of travel between the two stations separated by Ax = 0.350 is 
found to be AT = 8 ms. This gives a convection velocity AxlAr of the merged structure 
equal to 0*54Ue agreeing with the data in I. 

3.3. Comparison of phase-average turbulence intensity contours 

While at  any ( t ,  y ) ,  computation of Q involves use of the Taylor hypothesis, several 
other phase-average measures such as the turbulence intensities (u;)* and (v4)i can 
be computed directly. For the t + x transformation, these intensity data are presented 
for regions I1 and 111, as examples. The actual spatial distributions and the ( t ,  y )  
plane data are shown side by side. For region 11, the (u:)* data are shown in figures 
10 (a ,  b )  and (vi)* data in figures 10 (c, d) ,  respectively. It is clear that a t + x trans- 
formation only by a constant convection velocity, equal to the structure passage 
velocity, would yield spatial distributions resembling the actual distributions. All 
other valnes of U, in (6) would result in gross distortions, similar to those shown in 



Taylor hypothesis and large-scale coherent structures 39 1 

0 

I I I I I I I I I I I I I  

0.2 x /D 1.2 -36 T (ms) 0 

FIGURE 10. Spatial and temporal distributions of phase-average turbulence intensities for region 
11. (a) ,  (b)  for (u;)*/U,; contour levels are: 0.18, 0.15, 0.12, 0.09, 0.06 and 0.03. ( c ) ,  (d )  for 
(v2,)*/U,; contour levels are: 0.27, 0.20, 0.15, 0.12, 0.09, 0.06 and 0.03. 

figures 7(a)-(d) for vorticity. For region 11 in figures 10, however, even an average 
convection velocity of O.SOU, used for the t 3 x transformation results in contours 
with details and streamwise extents differing from the actual. 

A similar observation can be made for region I11 for which, the (u,")* data are shown 
in figures 11 (a,  b )  and ($)* data in figures 11 (c ,  d ) ,  respectively, in a similar fashion 
as in figures lO(a)-(d).  For these data, the longitudinal extents of the spatial distri- 
butions obtained from ( t ,  y )  plane data, are very close to those of the corresponding 
actual spatial distributions, if the structure convection velocity of 0.54Ue is used 
everywhere across the flow. However, differences continue to exist in the details. The 
corresponding differences between the same data in the (x, y)  and ( t ,  y) planes are of 
a lesser extent for region IV and relatively more for region I. 

The differences in the contours in the (t ,  y )  and (2,  y )  planes are expected to depend 
on the particular property considered. The extent of difference should depend on the 
corresponding time scale involved. The time scale of the coherent structure is much 
larger than that of the background turbulence. Properties like coherent vorticity Q 
are thus expected to undergo minimal distortions within periods of the structure 
passage while the background turbulence quantities like (u:)*, ($)* may undergo con- 
siderably larger distortions during the same period. It may thus appear surprising 
that the background turbulence properties in the (z,y) and ( t , y )  planes exhibit SO 

close similarities. This can be reconciled by the fact that the background turbulence 
field and the coherent structure field are not uncoupled; for example, the coherent 
vorticity !J can be shown to be linked with the gradients of the background Reynolds 
stress (u,.vr) (see 11). Not only is the dynamics of background turbulence controlled 
by coherent properties, the turbulence is also embedded in the coherent structure. 
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FIGURE 1 1 .  Spatial and temporal distributions of phase-average turbulence intensities for 
region 111. (a), (b) for (u2,)*/%; contour levels are in the sequence: 0.25, 0.20, 0.15, 0.12, 0.09, 
0.06 and 0.03. (c ) ,  (d) for (t$)>t/q ; contour levels are in the sequence: 0.25, 0.20, 0.15, 0.12, 
0.09, 0.06 and 0.03. 

It is perhaps worthwhile to note in passing that vorticity D is a more appropriate 
property for structure identification; (u:)$ and (vF)*, sometimes used as markers for 
structure boundaries (H. Fiedler, private communication) are obviously relatively 
insensitive to the structure details. For example, the ‘protrusion’ in the D(t , y )  
contours in region I11 (figure 5 d )  is not as clear in the corresponding (uf)* or ($)* 
contours (figures 11 b, d ) .  Furthermore, we observe that contours based on (u)  cannot 
identify the boundary of a free-shear-layer structure (see 11; Hussain, Kleis & Sokolov 
1980) unlike the case in the boundary layer (Coles & Barker 1975; Cantwell et al. 1978; 
Wygnanski et al. 1976; Zilberman et al. 1977). 

3.4. Estimates of terms neglected in the Taylor h.ypothesis 
In an effort to further evaluate the a(v>/at + a(v)/ax conversion schemes, the equation 
of motion in the coherent structure flow field was considered and the different terms 
neglected by the Taylor hypothesis were examined. For convenience, here we will 
use the decomposition, 

where (f) is the phase-average (which includes the time-average, i.e. ( f )  = f+ (f ,))  
andf, is the part due to the background turbulence field. 

Starting with the phase-average of the Navier-Stokes equation, and assuming that 
the ‘pressure’ and ‘viscous’ forces are negligible, and that the flow-field is axisym- 
metric on the phase-average, the expression for D can be found as, 

f(x, t )  = 0‘) (x, t )  + f r ( X ,  t ) ,  (7) 
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FIGURE 12. Distributions of the different terms in the a-equation, non-dimensionalized by f,. 
(a)  -a (u) /ay ;  contour levels are: 4, 2, 1, 0.3, -0.3, -0.6. 
( b )  -(u)-'i?(w)/at; contour levels are: 1.5, 1 ,  0.7, 0.3, 0.1, -0.1, -0 .3 ,  -0.7, - 1 ,  -1 .4 .  
( c )  -((w)/(u))a(w)/i?y; contour levels are: 0.6, 0.3, 0.1, -0.1, -0.3.  
(d) - (~ ) -~a (w~) / i ?y ;  contour levels are: 0.7, 0.3, 0.1, -0.1, -0.2. 
( e )  (u)-la(u,v,)/L+z; contour levels are: 0.2, 0.1, 0.05, -0.05. 
( f )  a(v)/&; contour levels are: 2 ,  1.5, 1, 0.7, 0-3, 0.1, -0.1, -0.3, -0 .7 .  

Note that in figures 3 (c) ,  4 ( c ) ,  5 ( c )  and 6 ( c ) ,  only the first two terms of the right-hand 
side of (8) were used to compute Q(t ,  y). 

Each of the terms on the right-hand side of equation (8) were calculated from the 
phase-average data. As an example, for region 111, the distribution of each of these 
five terms is shown in figures 12 (a)-(e) and the actual a(v)/ax distribution is shown in 
figure l2( f ) .  It is clear from these data that the terms other than a(u)/ay and 
(u)-l a(v)/at, are comparatively smaller in magnitude; especially (u)-' a(urv,)/ax has 
quite small magnitudes. It is surprising that the coherent momentum transport 
(v) i?(v)/ay is comparable to, and even less than, the turbulence transport a(v:)/ay. 
However, neither of these two terms is negligible compared to the primary transport 
terms associated with a(u)/ay or (u)-l i?(v)/at. Note that the transverse gradient 
a(u)/ay (figure 12a) is considerably larger than the gradient a(v)/ax (figure 12f). 



394 K .  B. M .  Q. Zaman and A .  K.  M .  F. Hussain 

Region ... I I1 111 IV 
&.k ( 2 3  Y) 20.9 12.3 6.6 3- 1 

15.3, -2 .4  8.4, - 1.6 4.8, -0.7 3.1, -0.07 
( 85) (81) (83) ( 102) 

a* ( t ,  y) 
aY 

3.5, -3 .9  

2.8, -1.2 

(60) 

(33) 

(24) 

(3) 

2.3, -0.7 

0.15, -0.24 

0.8, -0.6 
(47) 

(7) 

(15) 

(6) 

0.15, -0.06 

0.4, - 0.1 

0.08, -0.11 

TABLE 1. Maximum and minimum values of the different berms in equation (8). All values 
non-dimensionalized by f,. Range of variation in each region normalized by Qpeak (yo) are 
shown in parentheses. 

Note further that as a result of equation 6 (c ) ,  the actual distribution of the gradient 
a(v)/ax in figure 12 (f) is approximated by the distribution in figure 12 ( b ) .  

The computed maximum and minimum values for the different terms of equation 
(8), for each of regions I-IV, are listed in table 1.  Each of the terms is non-dimensional- 
ized by fp; the numbers in the parentheses are the maximum variations in a region 
expressed as percentage of the peak value of !2 in that region (i.e. 100 x (maximum - 
minimum)/Sl,,,k). A note of caution is in order in that these numbers are not for a 
point in the (x, y) or the ( t ,  y) plane because peaks of the different quantities occur a t  
different locations. These only give an estimate of the relative magnitudes of the 
different terms for each measurement region. It is obvious that none of the terms 
( (v) / (u))  a(v)/ay and (u)-l a(v:)/ay are negligible for any of the regions. The term 
(u)-l a(u,v,)/ax can, however, be reasonably neglected in the entire flow studied here. 

An estimate was made for the pressure term that was neglected in equation (8). 
The pressure term would appear on the right-hand side of (8) as -t (p(u))-l a(p)/ay. 
The lowest pressure in the centre of the viscous core of a rectilinear vortex is given by 
(Eskinazi 1967, p. 413), 

where p ,  = ambient pressure, pc = lowest pressure in the viscous core, J? = circulation 
around the vortex, r* = viscous core radius a t  maximum tangential velocity, and 
v* = tangential velocity a t  r*. The first equality for pc in equation (9) was used to 
obtain estimates of the minimum pressures in the vortex cores, which was cross- 
checked with estimates from the second equality of (9). The circulation, I?, was cal- 
culated through line-integration of the phase-average velocities (u) and (v) about the 
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Region ... I I1 I11 I V  
----7 

Vortex 1 Vortex 2 

0.5 0.5 0.5 1-0 1.0 

1.0 1.25 1.75 2.80 3.70 

6.4 3.2 1-16 1 *2 

TABLE 2. Estimate of the pressure term in the equation for a. 

0.5 

structure cross-sections in each region; r* and 2r* were estimated from the (v,)(x) 
distributions. It was assumed that, 

Accordingly, the magnitude of the pressure term was estimated for each region and 
is listed in table 2. The value of (f,p(u))-l (a(p)/8y)lmax for each region, expressed 
as a percentage of the respective Q-peak value, is also shown in table 1.  It can be 
inferred that the ‘pressure term’ in the phase-average equation is not negligible. 
Thus, i t  seems unrealistic that the a(v)/ax(t, y) term inferred from experimental data 
in the (t, y) plane can be very accurate. Since no method is known for measuring 
p(t ,  y) accurately, one may do the best in approximating a(v)/ax from a(v)/at through 
the simplest conversion, using a single convection velocity everywhere across the flow, 
i.e. via equation 6(d) .  

4. Conclusions 
The present results clearly indicate that application of the Taylor hypothesis can 

be acceptable when applied to single large-scale structures that are not undergoing 
rapid evolution or interaction with neighbouring structures. Such non-interacting 
structures exist in all shear flows between interactions. There are examples of shear 
flows where structure interactions are essentially absent. For eduction of the spatial 
distributions of structure properties in these cases, Taylor hypothesis can be used 
without producing large errors while significantly economizing the measurement 
efforts. In application of the hypothesis, however, one must use a single convection 
velocity everywhere across the entire shear flow and equal to the structure passage 
velocity. Uses of the local time-average, phase-average and instantaneous longitudinal 
velocities produce unacceptable distortions in the educed structure. During large- 
scale interactions like pairing, tearing or slippage which is typical of turbulent shear 
flows, no choice of the convection velocity renders the Taylor hypothesis acceptable. 
The error is least, though large, when an average convection velocity of the inter- 
acting structures is used with the hypothesis. 

The distributions of the different terms of the equation of motion, contributing to 
the phase-average vorticity but neglected by the hypothesis, have been quantitatively 
evaluated. It is apparent that contribution due t o  gradients of background Reynolds 
stress is negligible compared to that due to the gradients of phase-average velocities. 
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In  particular, the contribution due to the coherent structure pressure field is quite 
dominant and cannot be neglected. Evaluation of the different terms contributing to 
the phase-average strain-rate (not presented) also show that the contribution from 
the background turbulence field, rather than the coherent motion field, can be 
neglected. 

Since turbulent shear flows are presumed to be dominated by large-scale coherent 
structures which are continuously evolving and interacting with each other, use of 
the Taylor hypothesis should be considered unacceptable, in general. It is clear that 
the widespread use of the local time-average velocity in shear flows especially in the 
computation of wavenumber spectrum and eduction of large-scale structures is not 
acceptable. The plausible improvement by the use of the instantaneous velocity is 
not a solution either. Use of a single structure convection velocity should be an 
improvement, but this is also not free from limitation in that the structure convection 
velocity is neit8her unique nor easily measurable (Wills 1964; Fisher & Davies 1964; 
Clark & Hussain 1981, in preparation). In a turbulent shear flow, it appears that use 
of a single velocity, equal to the average of the velocities across the shear region, 
is the least objectionable choice for the convection velocity in the Taylor hypothesis. 

We are grateful to Dr S. J. Kleis for his helpful discussions during the course of 
this work. The work was supported by the National Science Foundation under Grant 
ENG 7822110 and the Office of Naval Research under Grant N00014-76-C-0128. 
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